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Abstract.

-he behavior of the electromagnetic field in an ideal

c_ it_ with oscillating boundary is considered in the

resc-_nce long-time limit. The rates of photons creation

_ vacuum and thermal states are evaluated. The squeezing

coef+_cients for the field modes are found, as well as the

_ackward reaction of the field on the vibrating wall.

1. Field Quantization in a Cavity of Variable Length

Here we give the results of our recent investigations relating

to the behavior of the quanti_-ed modes of the electromagnetic field

inside a resonator with oscillationg walls. We consider the electro-

magnetic field in an empty resonator formed by t_o ideal conducting

plain boundaries _ =0 and x =LCtb, and restrict ourselves ta the

linearly polarized mcdes with the electric vector parallel to the

boundaries. Then the field can be described b_ means o+ the single

scalar equation for the corre=_ponding com_o_e-± of the ve_-t_ poten-

tial with the nonstationary boL_ndary conditi_rs Ell ,,we as_=_:me c = i_

+Ptt - +Px_" O, 0 _:_ x" < L+:'_b; _(O,L) = ¢,(LC'Lb L> = 0 (1)

The c__:a_tizat:on _rocedure in this case was proposed by Moore [13.

._Ar;oth=,_-approach including the case of a ma=_sive boson scalar field

_a- in'_estigated in re$.[2].) The starting point of Moore's method is

the foll_:ing choice of the fundamental solutions of eq. (i),

)_.,...+,?:+.. t)= (4r+,,)-'"=(e>:'.p [-_.rr,'d_.(,-.x')]- exp _-irrn._(,+×)]t , (2'
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_.ur_ction R(_) being a solution of the functional equation

R[t+L(_) 1 - P.[t-L(t)] = 2 (3)

In the stationary case L('L5_ = L 0 the solut!on of eq, (3) Zs trivial:

F{°;(_.) = _/L O. Thus mcde functions are usual standing waves

_°_(x, t> = t(rtrD-_/2sin(rtr_×/Lo)e:_-::p(-_rzr_t.-'Lo). (4)_

A_ a#._ro>-'.imate solution of (3) for a slowly moving wall was found in

[I]. But in the most interesting case of ,the parametric resonance

L:_:, = %C 1 + ,-sin(_.,_,,], % = ,-,,_.-Z.o,_, = l,=..., I'1 <_1 (5)

that solution appears val:d :fly for not very large values of time

satisfy:ng the' restriction zct L ,-:<i. The correct asymptotic e>.'.pres-
o

sion for the function p(t) = R(t) - t in the long-time limit z_t >_ i

was obtained in refs. [3-5] (L° = ¢ = 1, _.=e>-pC(-1)g+1._t]):

_t_) =- ¢'2/_Q_3.1m{In[l + _ + e×p(L_qt)(I-_)]}, (6)
J_

For the motionless walls the field operator _ in the Heisenberg

O_ .

_ictc_re c_n be developed over the set of functions _n cx.t_:

.... }= , (7),,,; ,_,. c,,,;, ct,t j °
If the right wall oscillates only during the time interval 0 _ c _ T,

then fo_ t > T the field operator Can be written in two forms,

.... .}  too, --.,o--}-"+ ,, _1"" ,o, + ,-, L_, j . (8)fJ = _t_r_ + _r_ _ = #t

where _ (:_',c) is the solution o_ the nonstationary problem (I) coin-
O_

with '_n at _ < 0. It seems reasonable to assume that measur-tiding

ing devices react to $_ec_dv-_c_e __tunclLn_ _.ue_ (4) which are wave

functions o_ _Lc,',l quantum states possessing definite energy

va!_es. Then just the set of operators (,_,u) has the physical sense

at : > T. Since all quantum properties of the field were defined with

-e_pe:t to the state determined by the set of operator=_ (t_L:) (which

were "physical" operators for t -:"0 ), we have to expand the "new"

operators (,-,,_+) cver the "old" ones ( ,_ _ ,

?'_-/xTuft •

To cal:_late the Bogo!iubov coefficients anza and /grim one should take

i_to acco_{nt that both systems of mode functions (2) and (4) con=-ti-
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-___= :__.__-.iete orthonormal sets with respect to the scalar product [I]

L<'_D

(" "I(g_,_) = _LId.g g,_.f. _ _,t. _ , (_.r.__-_./_. ? IC),

0

==e_ the _ollowing relations can be obtained [3-.5],

g.SLo+I ( [ ]}
f;ru__ L ..."Lo- I

-_ :'=_ta!-ed calcu!ations of these ir,tegrals were performed in [3-5].

-_e "_-:al result for q = 2z is as follows (6='_/nz'),

F sin[_2zn6-+'TD/2_"] sin[_(n-+"Li:] [_n(n+,_) (I- ,/2__;:_,"_.'_-I = e>::p .' ] • , 12 ,"

-':.'.._,_ , .!2,n6:,D sl n [, (,,:,,,)/2_"]

[r. the main _esona,ce case o_ _=I the following e:._:pres_i:.r _.or the

.:ud......s_uared cf the Bogoliubov cDefficients can be obtained,

, :_,_,_t ['1 - (-1) _n.
= 1 " 1 + ( - 1 ) m.+;'L . ( ! 3 )

2

2. Rates of Photons @eneration

The t:tal number of photons created in the ,n-th mode from the

vacuum state t_ the time instant _ equals

P,_ = "Ol_m._m.lO> = _l/9:,.unl"- (14)
n

Omitting the detailes of calculations given in [3-5] we present the

final result :_ = I)

Pm _ (mn_)-_[ In(m/26) - (-1)_'In(!/2n6)]" (!5)

Si_-e i_ the case under study 6(z>=e.-...'p(-n_'')ln, we get the .=cll_w:ng

rate _,f photons generation in the ..n-th mode when the wall vibrate= at

t_e t_',ce f-equency of the ;irst resonator eigenmo_e _or z,:.->!:

dF' /d_ = (_/n,T_) [ 1 -- (--!) • (!=

T._i =- result is valid in fact om!y for not ve_.; large n-',mt_e_ ;r_. Sinze

it. _eal situations we shoulC limit time _ by the reson_=.t=r r_!axati=,n

time r (due to t._e dissipati.D_ ir-slde walls), the ma×imum number c_

phcton=_ generated in the ,_-th mode e_uals approximately
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.-:-÷_e :;_. 1 is the ouality _actor of the resonator's aL-th mode.

cz,_ _u" -=s (15)-(17) essentially differ from the results of

-_=_=-.:_,_, where the problem of photons creation in a resonator with

= I iat ofz_-_'_ ing ideal mirror was also considered. Howe Jet the authors

tP_at papers did not take into account the deep reconstruct_cr, of th_=

_:e]_ ,-.odes inside the resonator in the long-time limit. Therefore

the _ate o_ photons generation obtained in [6] and [7] was proport=o-

nm! :n e===n_e to (_. >2, whereas our _ormulas show that this rate i=

.-,-__=_n_io_a_ to the _irst p__wer o _ the product _ • The quadratic _aw
2

P ,x "L-..,,1) is "valid only in the short-time approximation under t_=

cored:rich P << I, as was showr in [8].

I_ th_ initim: density matrix of the _ield corresoonds to the

='_-=--_:.=,_ dist-ibuticn with _ni_e._ temperature; then _e_ _ve_mge- number

r _ =_:tl.z_al'__ "thermal" quanta created i_ the a_-th mode e_uais r_]

-!
- F'u°'C = i" ÷ • e::.::p(,_/8) - 1

•J,n = Pa_ -n /_ .

c_ i e_::p(]/®) + ii (18)-- 2(_an_)-'[ 1 - (-1)_ ] _. In + C_'26/m_>,

j--1 exp (j/e) -

where ® =_TLo/nhc , _ is Boltzmann's constant, T - temperature.

The -'_al numbe_ of "thermal" photons does not depend on time.

Moreover, -n the even modes it is almost zero up to the terms of the

order of 26/,_. In the low temperature limit ® <_ 1 and _or _t:..1 [4]

[ <-i "' ] -i/e p,.,,-,,:AP m : 4( a ) 1 - ) 'e << a_ " ''-_

_- the high temperature limit one gets [4]

"" -t-.e resor.a_or _,as a finite _uality ,_actor Or'in/_in the _-th mode,

_i _- t _= temperature cc-rect_ons can be neglected provided

_ ,< 4_-O,,:',,r,..:.,.--,jn_a:'_;
L

_.' ;,..', 1. (21 :'
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3. Squeezing Coefficients

._c_ let us consider variances of canonical coordirates and

_-._._e-t__ operators (quadrature components)

÷ ('_,, . :Ti F" ">c:T_ ,_T_

"'= th_ --.tial quantum state of the field was vacuum or coherent one,

t-e-_ t-_e _-,llow:ng general formulas are valid [8_,

f_ n_

•- + Re(c, -f_' ) , ,= + f_ l z (23;
2 T_F&

b

:_ t';e case of q=2 vJe have [4,52

c- " t-,oo) - - (hahn) 1 - (-I - (rim) -sl (r_,r,) ,
.k" _"

Yfl i'll

whe-_= si :x) means the integral sine function:
X

si(x) = J'dL.sin(L)/_.

,210

):-_-=.me that the variance is always Le_='. than _.ts value i_ t_e

(26"

(27)

VaCL_,U_

_tate c_,ec =.'/2. 7h:s means that the fiel _. o=cu-s ._n the sq_ee_ed

= I- 2_ assumes the_t_ The relative squeezing coefficient Km x x

ma>::imum ;.alue K!=0.22 for _r_= 1- FO_ large 4% :.,> 1 this coefficient

slowly dez-eases according to the asymptotic fo.,"mula

K _ 2/(_,_) • (28)
n%

The _ano_ical momentum variance inc,_eases in time acro_ding to

the same :a_ as the number of created quanta (15",. The general depen-

dence=_ a_ variances on time are rather intricate. As was shown in

.[E'], in the sho-t time limit zZ ..'<I there is a small squeezing in the

::,-.._.'_._;-'_t,_-_ ,r_,_n_u_ u_z-L_nce: _ _ *-(1-n_t) (for f_ = I). Meanwh:!e in
p_,

the i=_g tlme limit the situation is quite opposite: there is some

s_ueezz_g o _ the canonical coordinate, and unllmitedly growing ir

time '-a-lance of the canonical momentum, As to the cmvarlance of the

c_._dinate and momentum (25), it turns out to t e eq_al tc zero _._p to
-i

t__= ter_,s c _ the order of (_t) • Thi_ mea_s that the field occurs it.

m sc_:eezed b,__t unco_related state. Ncretheless, this state is mot a
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-l-_:.,m un-_e_tainty state, since c, _ ,,:.
pp xx

e:z, lalned ky a strong inter_ode _nteraction.

when Ft.,.'. This is

average all time dependent functions contained in

period of oscillations Y = 2.--"q. All integrals can

e_<actly with the aid o÷ formula ([14], eq.2.5.16(22))

4. Back Reaction on the Oscillating Wall from the Field

Z_ :s well _nown that vacuum fluctuations of electro_agnetic

_ielZ _:__.u,.It in an attractive Casimir's force between _ncha_ed

-_nnd_cti-._ plates [9-!1]. The general expression for the force pre=_s-

_.n._ th_ -_o,:n_ wall ( more precise'y the T i-component of the energ,,'-

--_.ert.__ te-_sor of the field ) was calculated in [10,12]:

F = - [ _c_t-Lc't._.> + _(t+L(tDD 2, (29)

_ere fu_r,ction _<v> is e>::pressed through R-function introduced accor-

:_inE ta e_s. (2) and (3) as follows ( in dimensionless unitsl remind

that we consider the case of "one-dimensional" electrodynamics ),

z

" - "" ;_4n R" ('y'_ ;_ P.' ¢y3 _:

In the :ase of motionless wall (29) and (30) lead to the knowr.

e::<p_ession for Casimir's force in one dimension

F _°_ = -nha ,..'24La (31 :
o

r_e co-rections to (31) in the limit of small velocities __f the wall

(with respect to the velocity of light) were :a!culated ir [13]. The

additional force appears attractive and propn-tiona! to the square of

wall "s velocity. Here we calculate the same force using the long-time

asymptotz=s of /;'-function (6)- Since Id_/dt I _ I_. I << _. , we can

differe-tiate R-function with respect to time believing parameter _

to be c_-;=_tant. Then the first three derivatives are as follows,

R'dtb = _._k'tb, (32)

Since the force e.,.'.hibits rapid oscillations, it seems reasonable to

(35) over the

be calculated
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d -,,;. =

j -- = _ < _ _,
(.-_7_

f:na" !y :r,

Z - .2.._. _.-S_2j_.2 ,rc'F'"' .F"__.-', = .-:, (RQ_, c,,*, ,

"-_=_-_'=.'-.:-_he_=e e;:::pressions into (29) and (30) we get

,"'----_--_: ....._ e__.S L_rtits

<F ..... E-_ q2 . (3o>

=_r 9 = ' this formc',la coincides with (31). Note that this is not the

__ e _he minimal resonance value is q = 2)_e---=--e -_s , , so that ph_,_-

t_-.s a s -__t created inside the resonator, and the force conserves

it-_- voccu_m value. Fc_r q =_ 2 we have not attractior_, but an e::.::poner.-

timilv ircreaslng pressure on the oscillating wall dote to the c_ea-

_i-_n o _ -eal phc, tons in the cavity. By the way, *ormula (Zg) shows

ci=_t._ctl-/ that for E _ _ the physical results do not depend or the

__-r r_ the parameter _ characterizing tee d.mensionless ampl:

w_=il's _ibra_!ons, since .:'F.>is proportional to e::::p(l_'inq_'-

5. Discussion-

Let _'.s,summarize the main results. We have presented a new solu-

tion for mode functions of the electromagnetiz field ir=_i_e at. ideal

cavity with osci-lating wali in the Io-_g-ti-_ -esora_-e ::,_it. It

appears that the *ie!d modes structure is slgni_i_antly changed in

t_is "i,_it in comTarisor, with the case o_ mc.tion!ess bourda-ies. :t

:= see .... ="-i_,'-'-",- 'f one compares, e.g., the time derivati'-_es of

=__r---_-s /;:_o_(_.)and /_(,._)giver by (6): ir the motio_les-= case one

gets _.,-____ in dimension_ ess, L_ni+=_._. , whereas in the I c.r,g-ti,me _es:--

-m-ca "_it the corresponding value appears much !ess than urity for

=.m:__s. __ , i_stants o _ time e>.-_-epting those when cos(n_) is very

floss_ _: ,. ,!=_e__eq. (32)) • P'hysica! y th _.s cha-ge o =, the _ie_d ,modes

strL_t'_:_e man'i_-ests itse'f in the transition from the quadratic la_

-,$ c,h_tons generatior: in the short-time sppro×imation to the linear

law i-_ the iorg-t:_,e asymp_ot_cs. We have established also the p_ss:-
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5 l:ty of o_ta:_ing some _quee:in_ _although rathe_ moderate> :n t_e

_esona-_e modes•
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